科学研究
学术报告
Optimal Subsampling for Big Data: from ‘Static Data’ to ‘Data Streams’
邀请人📓💁🏼‍♂️:梁汉营
发布时间🤾🏼:2024-12-14浏览次数💃🏻:

题目👮🏻‍♂️:Optimal Subsampling for Big Data: from ‘Static Data’ to ‘Data Streams’

报告人🕓:艾明要 教授 (北京大学)

地点🧜🏿‍♀️:致远楼101室

时间:2024年12月20日(周五)下午14:00-15:30

摘要:Subsampling methods are effective techniques to reduce computational burden and maintain statistical inference efficiency for big data. In this talk, we will review different subsampling techniques for efficiently dealing with different types of big data, not only for different inferential models from linear model, to generalized linear model, and to estimation equations, but also for different types of data from static data to dynamic data streams. To deal with the situation that the full data are stored in different blocks or at multiple locations, a distributed subsampling framework is developed, in which statistics are computed simultaneously on smaller partitions of the full data. Finally, the proposed strategies are illustrated and evaluated through numerical experiments on both simulated and real data sets.

欢迎广大师生前来参加


意昂4专业提供⛹🏽:意昂4🛌🏼、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流🧒🏿,意昂4欢迎您。 意昂4官网xml地图
意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4 意昂4